The influence of anisotropic F region ion velocity distributions on ionospheric ion outflows into the magnetosphere

نویسنده

  • K. Suvanto
چکیده

The contribution to the fieldionospheric F region and sources of the heavy ions aligned ionospheric ion momentum equation, due to which are accelerated to several electron volts at coupling between pressure anisotropy and the greater altitudes and subsequently flow from the inhomogeneous geomagnetic field, is investigated. ionosphere into the magnetosphere. In order to We term this contribution the "hydrodynamic mirror look at this suggestion in more detail, this paper force" and investigate its dependence on the ion drift and the resulting deformations of the ion velocity distribution function from an isotropic form. It is shown that this extra upforce increases rapidly with ion drift relative to the neutral gas but is not highly dependent on the ion-neutral collision model employed. An example of a burst of flow observed by EISCAT, thought to be the ionospheric signature of a flux transfer event at the magnetopause, is studied in detail and it is shown that the nonthermal plasma which results is subject to a hydrodynamic mirror force which is roughly 10% of the gravitational downforce. In addition, predictions by the coupled University College London Sheffield University model of the ionosphere and thermosphere show that the hydrodynamic mirror force in the auroral oval is up to 3% of the gravitational force for Kp of about 3, rising to 10% following a sudden increase in cross-cap potential. The spatial distribution of the upforce shows peaks in the cusp region and in the post-midnight auroral oval, similar to that of assesses the role of temperature anisotropy on plasma dynamics in an inhomogeneous geomagnetic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tiie Modelled Occurrence of Non-thermal Plasma in the Ionospheric F-region and the Possible Consequences for Ion Outflows into the Magnetosphere

A global, time-dependent, threedimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly ...

متن کامل

Ion energization in Ganymede’s magnetosphere: Using multifluid simulations to interpret ion energy spectrograms

[1] We investigate the ion population and energy distribution within Ganymede’s magnetosphere by examining Ganymede’s ionospheric outflow as a source of heavy (O) and light (H) ions and the Jovian magnetospheric plasma as an external source of heavy ions. We develop a method for examining the energy distributions of each ion species in a three-dimensional multifluid simulation in a way directly...

متن کامل

Solar and seasonal dependence of ion frictional heating

Ion frictional heating constitutes one of the principal mechanisms whereby energy, originating in the solar wind, is deposited into the Earth's ionosphere and ultimately the neutral atmosphere. Common programme observations by the EISCAT UHF radar system, spanning the years 1984 to 1995, provide the basis for a comprehensive statistical study of ion frictional heating, results of which are docu...

متن کامل

Relationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions

The dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polarorbiting Exos-D (Akebono) satellite. We found that b...

متن کامل

Generation of ELF waves during HF heating of the ionosphere at midlatitudes

Modulated high frequency radio frequency heating of the ionospheric F-region produces a local modulation of the electron temperature, and the resulting pressure gradient gives rise to a diamagnetic current. The oscillations of the diamagnetic current excite hydromagnetic waves in the ELF range that propagate away from the heated region. The generation of the waves in the 2 – 10 Hz range by a mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007